Lecture 7 — 02/04/2025

Physics of optical cavities

- Bragg mirrors, an alternative to metallic mirrors
- Fabry-Perot cavities: a reminder

Light-matter interaction in microcavities
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Limitations of metallic mirrors

Three metals are mostly used to realize mirrors in the visible and the IR: Ag, Al and Au
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Issues: peak reflectivity (R) < 99% (major limitation in terms of quality factor), progressive decrease in
R at short wavelengths due to proximity of plasmon frequency, structure (often amorphous) not
compatible with the epitaxy of semiconductor layers

— Which alternative?
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Bragg mirrors or distributed Bragg reflectors (DBRs)

DBRs consist of a stack of quarterwave bilayers made from dielectric materials
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Alternative to metallic mirrors: higher peak
reflectivity + compatibility with epitaxial
requirements
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Bragg mirrors
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R and AE both depend on the refractive index contrast (n,-n,)/n,
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Bragg mirrors: examples

9 9 -9 hd L] hd L] | L] L L L) L
° What could be a side effect when
FS 5 ki irs/bilayers?
oN o stacking many pairs/bilayers?
g g $ ll | M 1 ' Ll i ] i ]
Te 9 ée 6 AIN Group-Ill fraction
) ~ ¥ Av) Al R
é 99 4+ — - o o e e e e e e e e e e 4 — Ga —
> > 5§ In ]
- | | &J/ ! 0 1
> ! | o 4| AkGaN Alidn,N i
."3 : : g S GaN uv
©
g | I % 3
2 9 5 =1 | I - e 2
x : ' \
| .
3 997 : | " 1+ IR In,GarN e
m I I i 1 i 1 1 1 " L " L "
: : 31 32 33 34 35
! Lattice parameter a (A)

Strain buildup

— source of macroscopic defects such
as cracks (= minimization of
accumulated strain whenever possible)
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Bragg mirrors: examples

Keep in mind that the refractive index
A is a wavelength-dependent quantity!

(cf. Lecture 13, fall semester)

Reflectivity > 99"///

DBR type Bra&g [nm] n, n, # of pairs
GaAs/AlAs 970 3.52 2.95 11
GaAs/AlO, 970 3.52 1.6 4

GaN/Al, ,Ga N 450 2.41 2.33 64

Si;N,/SiO, 450 2 1.5 9
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Bragg mirrors: examples
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Bragg mirrors: stopband width

Stopband width
DBR type ABragg [nm] n, n, AN [nm]
GaAs/AlAs 970 3.52 | 2.95 109
GaAs/AIO, 970 | 352 | 16 | (475>
GaN/Al, ,Ga, ;N 450 2.41 | 2.33 10
Si;N,/SiO, 450 2 1.5 82
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Why such a stopband
— width value does not
make any sense?



Bragg mirrors: penetration length

Penetration length = Equivalent location of an imaginary perfect mirror
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Bragg mirrors: penetration length

Penetration length

DBR type Agroge [NM] | 1, n, | #of pairs | L .. [nm]
GaAs/AlAs 970 3.52 | 2.95 11 358
GaAs/AlO, 970 3.52 1.6 4 117

GaN/Al, ,Ga N 450 241 | 2.33 64 1218

Si;N,/SiO, 450 2 1.5 9 199
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Fabry-Perot cavities

To be done during

Transmitted electric field amplitude (E,): the series!
1,
Et - Ei is
1-rre

withr 0 the phase shift between

I‘l, II ?'2._ ?2
e: external
i internal

Zero loss case (Asetto 0): R=1-T

We also consider A-independent r; and t; terms (+ n,)
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transmitted and reflected waves:

_4rn L, coso,

o
A
The transmitted intensity is given by:
2

Et (tltZ )2 1
I'= - 2 4rr o

E|  (1-rn) 1+—1L2 sin® —

(1 —hr 2)

E;: amplitude of incident electric field
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Fabry-Perot cavities

Light confinement/trapping at specific
wavelengths

Mode selectivity
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NOTE: the higher the reflectivity of the mirrors the

higher the mode selectivity (i.e., the finesse)
1See, e.g., Optics, 3 edition, by E. Hecht (Addison Wesley, Reading, 1998) or Principles of
Optics, 7t edition, by M. Born and E. Wolf (Cambridge University Press, Cambridge, 1999)
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Cavity mode wavelength (6 = 2rq with g an integer),

i.e., maximum of transmission:

2n.L. cosO =g = or
27

1 fsin®(5/2) s

L 1+ fsin® (6/2) -
I 1
I 1+ fsin® (6/2)

Valid in the limit where t,t, = 1- r,r, (i.e., in the zero-loss
case), which is inherited from Stokes relations’

4nr,

(1 —hh )2

where f =



Figures of merit of optical cavities

Under normal incidence, the cavity mode linewidth is given by:

c 1-nr,

Ve = |
n.L. \nhn,

Cavity finesse (spectral selectivity):

o

_I_GQ
Quality factor:
A
Q=—=wr,
A
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Ratio between the spectral separation between consecutive
modes and the cavity mode linewidth

7. is the cavity photon lifetime, i.e., the storage time of a
photon in the cavity before it leaks out!
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Planar microcavities

Cavity with a small thickness (on the order of the wavelength) made from dielectrics
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Since the mode wavelength is given by:
2n.lL. cos0. =qA

the cavity thickness under normal incidence is
equal to q4/2
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Planar microcavities
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Planar microcavities: dispersion curve

To get the mode dispersion, we need to express the total wavevector inside the cavity (k.) as a
function of its normal (k1) and parallel (k”) components.

The interference condition applied to the wavevector in the normal direction leads to: 27
ki 2L.= 2qr where we use the fact that under normal incidence: k, =k n_andk, = -

The total wavevector of the resonant wave inside the cavity is thus:

2
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Planar microcavities: dispersion curve

Dispersion curve
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Cavity mode
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Very small cavity photon effective mass
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Light-matter interaction in
microcavities
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Microcavities: light-matter interaction
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Semiconductor microcavity

— Top DBR
—
\/ g\l2 cavity
Qly _
— Bottom DBR

(A4 bilayers)

Cavity (MC) + oscillator (QW excitons)
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Light-matter interaction
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New eigenmodes: cavity polaritons

Perturbative (Fermi’s golden rule) Non perturbative (correlated states)
Weak coupling regime (WCR) Strong coupling regime (SCR)
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Weak coupling regime

Spectral selectivity
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Case of a QW with a broad luminescence linewidth in a cavity
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