

Lecture 7 – 02/04/2025

Physics of optical cavities

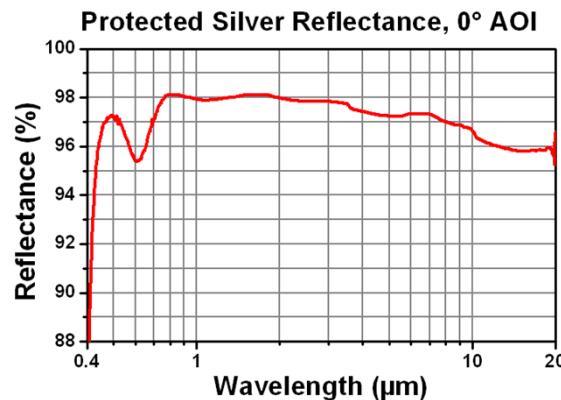
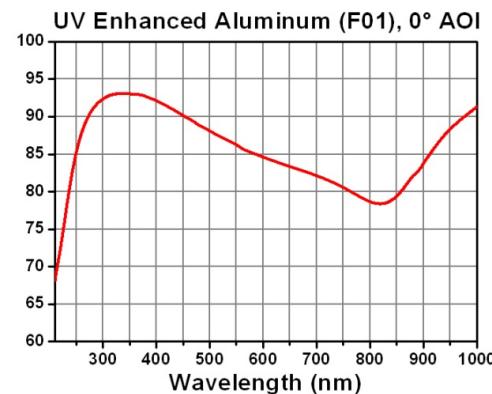
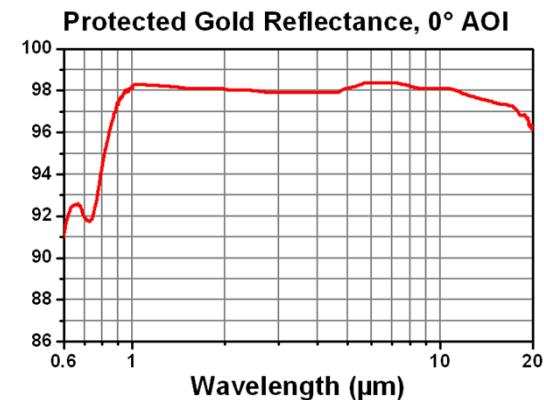
- Bragg mirrors, an alternative to metallic mirrors
- Fabry-Perot cavities: a reminder

Light-matter interaction in microcavities

Physics of optical cavities

Limitations of metallic mirrors

Three metals are mostly used to realize mirrors in the visible and the IR: Ag, Al and Au

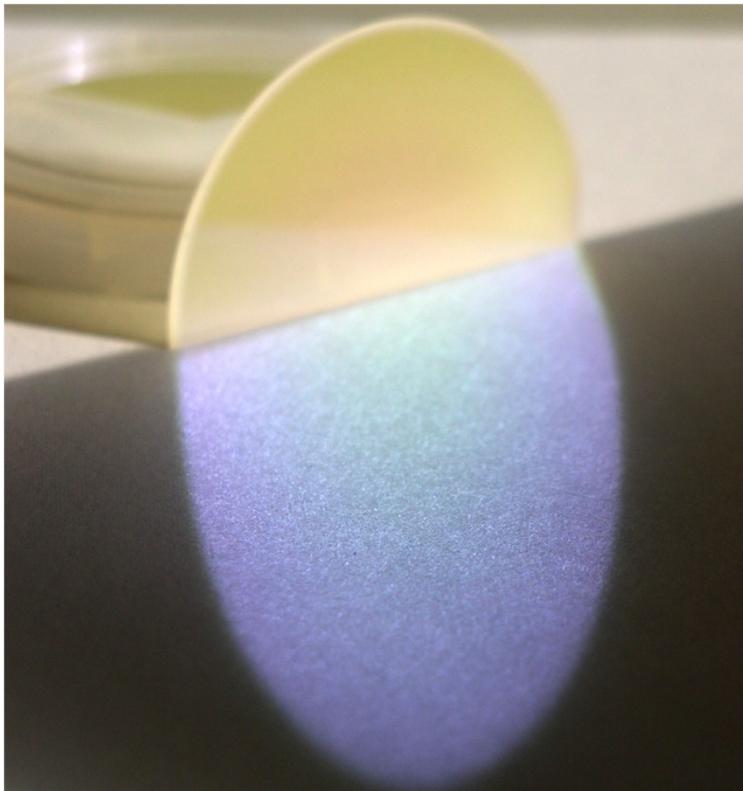


Issues: peak reflectivity (R) < 99% (major limitation in terms of quality factor), progressive decrease in R at short wavelengths due to proximity of plasmon frequency, structure (often amorphous) not compatible with the epitaxy of semiconductor layers

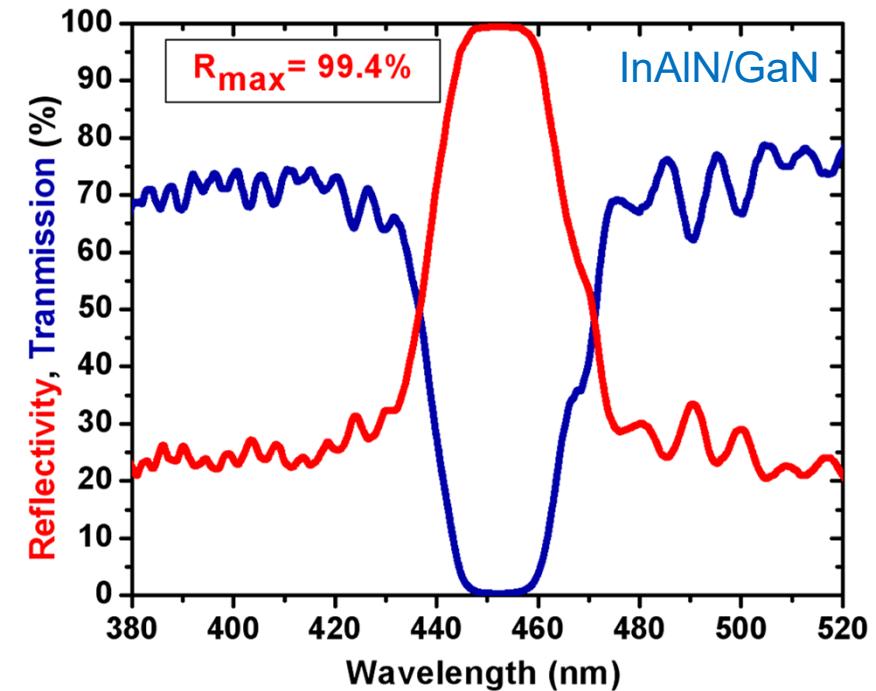
⇒ Which alternative?

Bragg mirrors or distributed Bragg reflectors (DBRs)

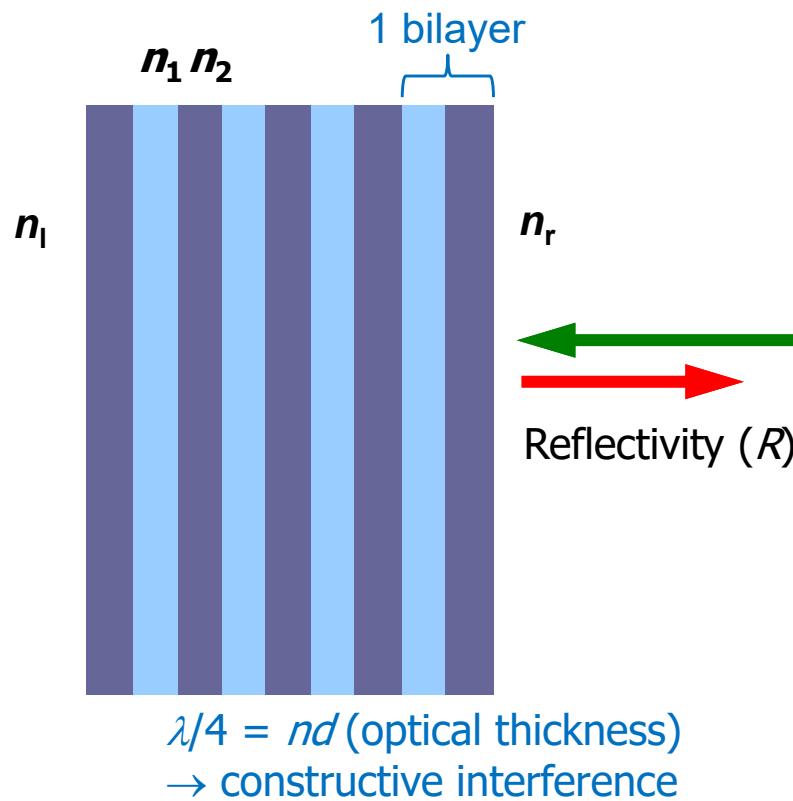
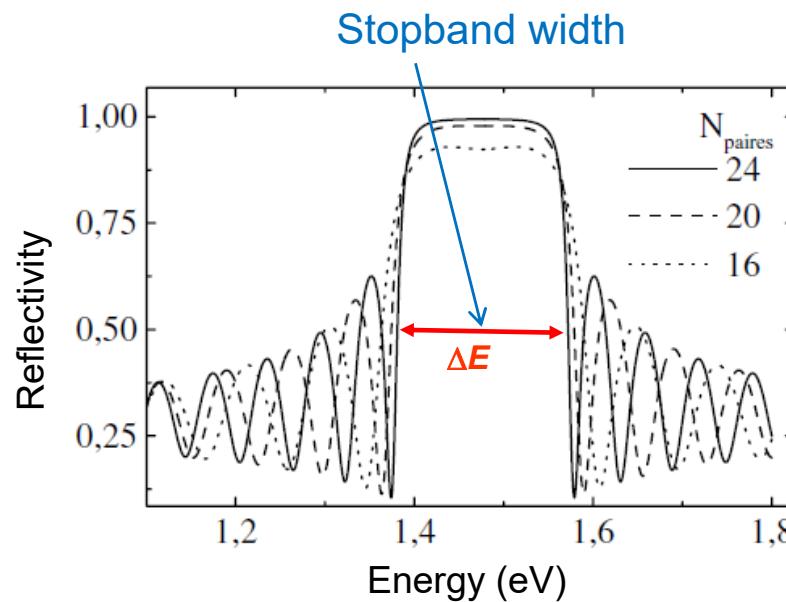
DBRs consist of a stack of quarterwave bilayers made from dielectric materials



Alternative to metallic mirrors: higher peak reflectivity + compatibility with epitaxial requirements

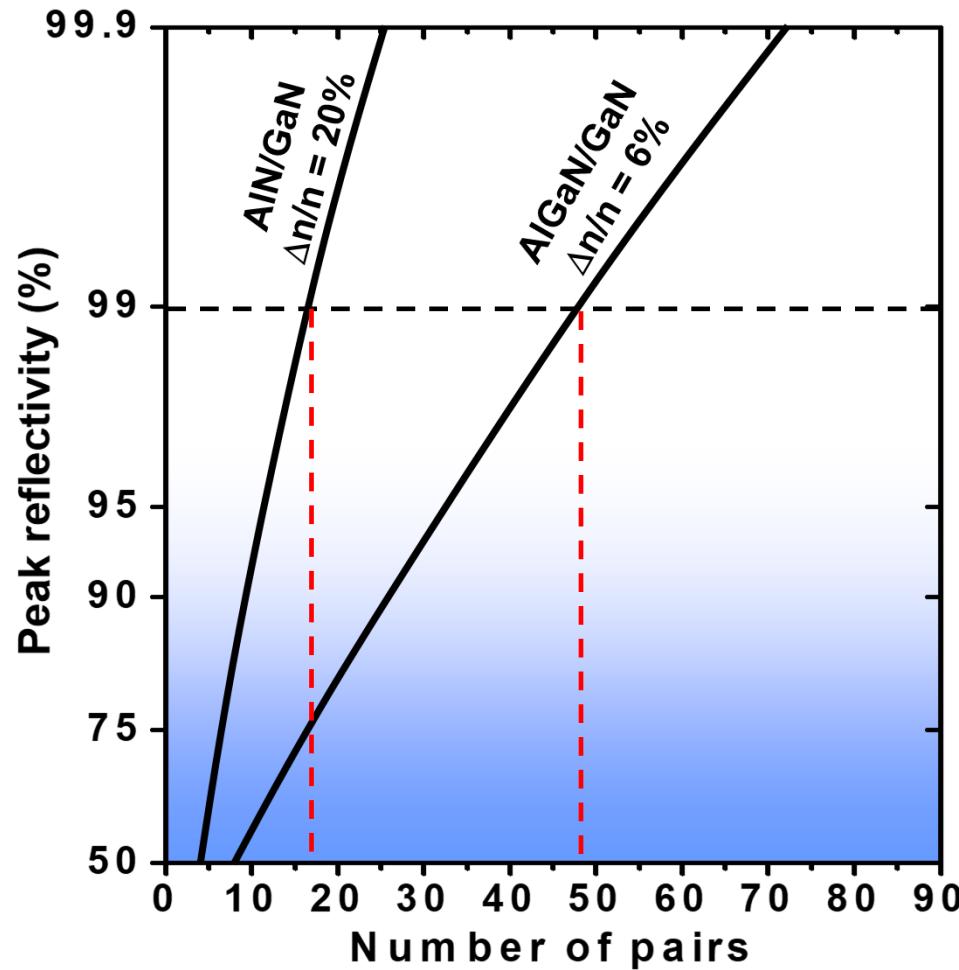


Bragg mirrors

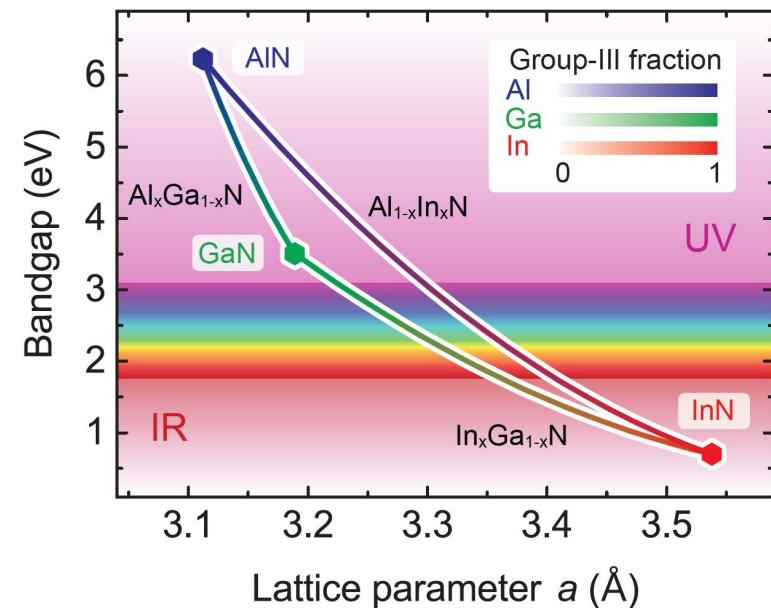


R and ΔE both depend on the refractive index contrast $(n_2 - n_1)/n_1$

Bragg mirrors: examples



What could be a side effect when stacking many pairs/bilayers?



Strain buildup

⇒ source of macroscopic defects such as cracks (⇒ minimization of accumulated strain whenever possible)

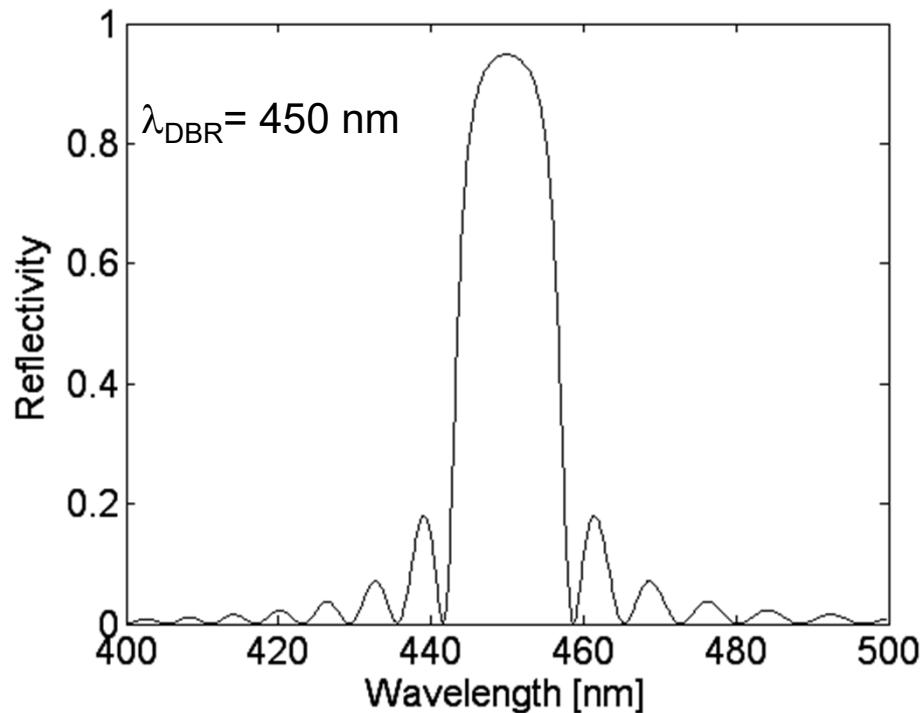
Bragg mirrors: examples

Keep in mind that the refractive index is a wavelength-dependent quantity!
(cf. Lecture 13, fall semester)

Reflectivity > 99%

DBR type	λ_{Bragg} [nm]	n_2	n_1	# of pairs
GaAs/AlAs	970	3.52	2.95	11
GaAs/AlO _x	970	3.52	1.6	4
GaN/Al _{0.2} Ga _{0.8} N	450	2.41	2.33	64
Si ₃ N ₄ /SiO ₂	450	2	1.5	9

Bragg mirrors: examples



Stopband width

$$\frac{\Delta\lambda}{\lambda_0} = \frac{4}{\pi} \arcsin\left(\frac{\Delta n}{n_1 + n_2}\right)$$

Bragg mirrors: stopband width

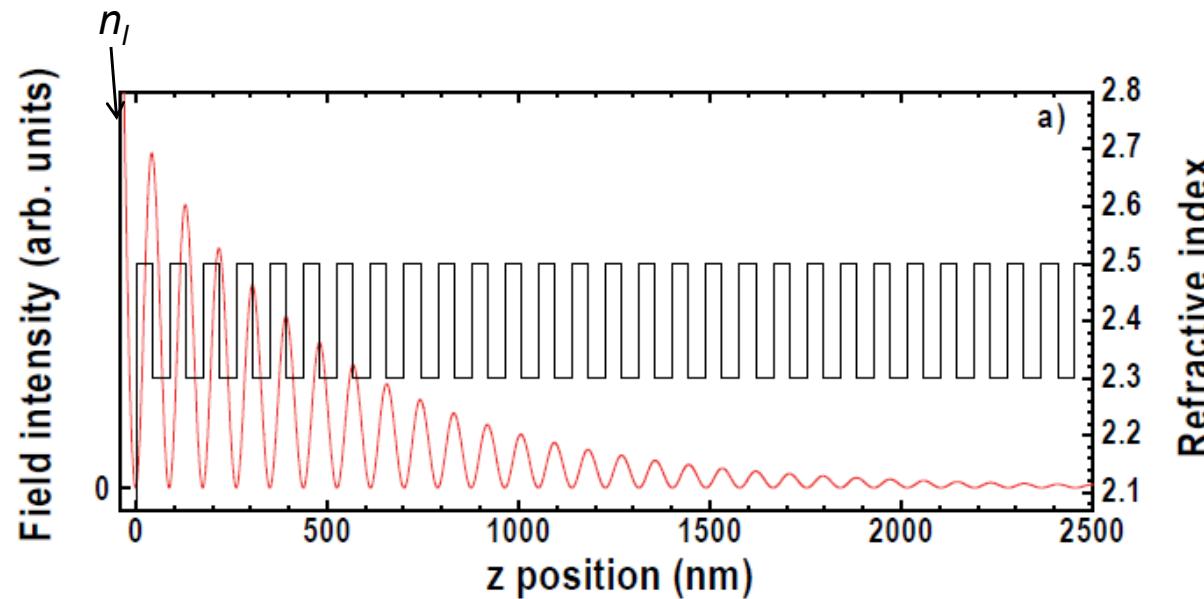
Stopband width

DBR type	λ_{Bragg} [nm]	n_2	n_1	$\Delta\lambda$ [nm]
GaAs/AlAs	970	3.52	2.95	109
GaAs/AlO _x	970	3.52	1.6	475
GaN/Al _{0.2} Ga _{0.8} N	450	2.41	2.33	10
Si ₃ N ₄ /SiO ₂	450	2	1.5	82

Why such a stopband width value does not make any sense?

Bragg mirrors: penetration length

Penetration length \equiv Equivalent location of an imaginary perfect mirror



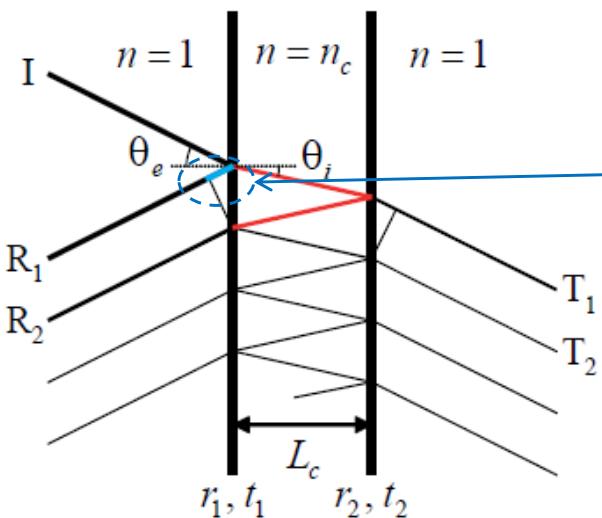
$$L_{\text{DBR}} = \frac{\lambda_0}{2} \frac{n_1 n_2}{n_1 (n_1 - n_2)}$$

Bragg mirrors: penetration length

Penetration length

DBR type	λ_{Bragg} [nm]	n_2	n_1	# of pairs	L_{DBR} [nm]
GaAs/AlAs	970	3.52	2.95	11	358
GaAs/AlO _x	970	3.52	1.6	4	117
GaN/Al _{0.2} Ga _{0.8} N	450	2.41	2.33	64	1218
Si ₃ N ₄ /SiO ₂	450	2	1.5	9	199

Fabry-Perot cavities



Zero loss case (A set to 0): $R = 1-T$

We also consider λ -independent r_i and t_i terms (+ n_c)

Transmitted electric field amplitude (E_t):

$$E_t = E_i \frac{t_1 t_2}{1 - r_1 r_2 e^{i\delta}}$$

with δ the phase shift between transmitted and reflected waves:

$$\delta = \frac{4\pi n_c L_c \cos \theta_i}{\lambda}$$

The transmitted intensity is given by:

$$T = \left| \frac{E_t}{E_i} \right|^2 = \frac{(t_1 t_2)^2}{(1 - r_1 r_2)^2} \frac{1}{1 + \frac{4r_1 r_2}{(1 - r_1 r_2)^2} \sin^2 \frac{\delta}{2}}$$

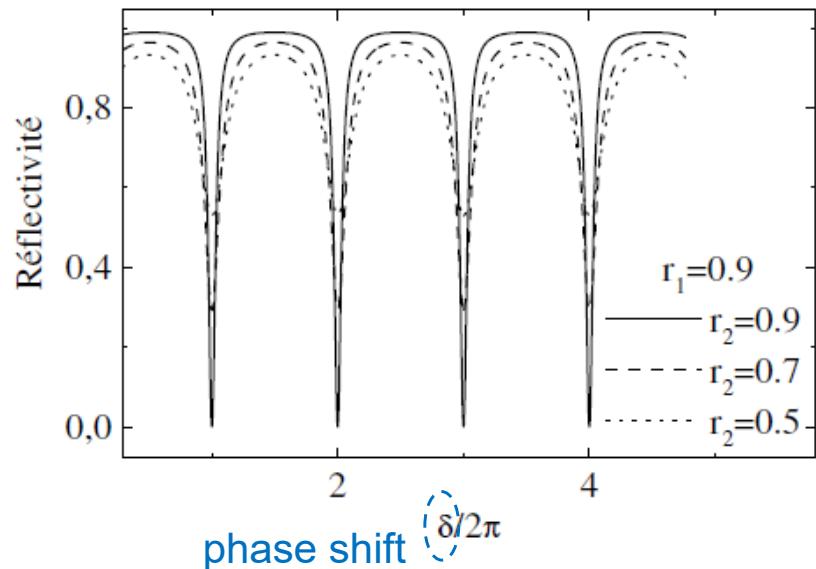
E_i : amplitude of incident electric field

To be done during the series!

Fabry-Perot cavities

Light confinement/trapping at specific wavelengths

Mode selectivity



NOTE: the higher the reflectivity of the mirrors the higher the mode selectivity (i.e., the finesse)

Cavity mode wavelength ($\delta = 2\pi q$ with q an integer), i.e., maximum of transmission:

$$2n_c L_c \cos \theta_i = q\lambda = \frac{\delta\lambda}{2\pi}$$

$$\begin{cases} \frac{I_r}{I_i} = \frac{f \sin^2(\delta/2)}{1 + f \sin^2(\delta/2)} = R \\ \frac{I_t}{I_i} = \frac{1}{1 + f \sin^2(\delta/2)} = T \end{cases}$$

Valid in the limit where $t_1t_2 = 1 - r_1r_2$ (i.e., in the zero-loss case), which is inherited from Stokes relations¹

$$\text{where } f = \frac{4r_1r_2}{(1 - r_1r_2)^2}$$

¹See, e.g., *Optics*, 3rd edition, by E. Hecht (Addison Wesley, Reading, 1998) or *Principles of Optics*, 7th edition, by M. Born and E. Wolf (Cambridge University Press, Cambridge, 1999)

Figures of merit of optical cavities

Under normal incidence, the **cavity mode linewidth** is given by:

$$\gamma_c = \frac{c}{n_c L_c} \frac{1 - r_1 r_2}{\sqrt{r_1 r_2}}$$

Cavity finesse (spectral selectivity):

$$F = \frac{\pi \sqrt{r_1 r_2}}{1 - r_1 r_2}$$

Ratio between the spectral separation between consecutive modes and the cavity mode linewidth

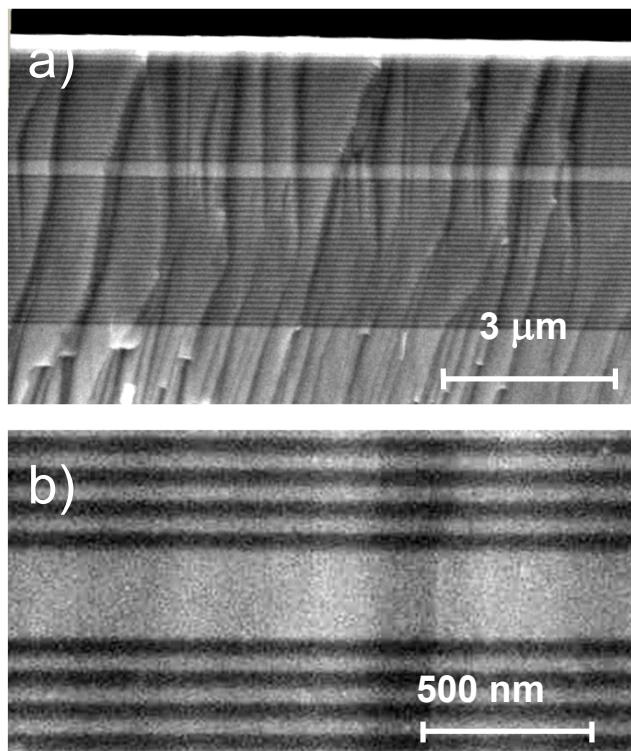
Quality factor:

$$Q = \frac{\lambda}{\Delta\lambda} = \omega \tau_c$$

τ_c is the cavity photon lifetime, i.e., the storage time of a photon in the cavity before it leaks out!

Planar microcavities

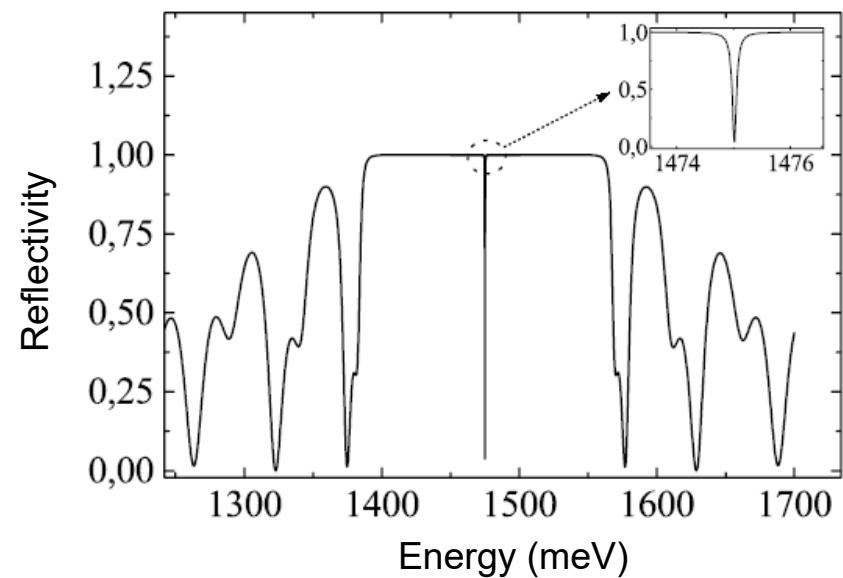
Cavity with a small thickness (on the order of the wavelength) made from dielectrics



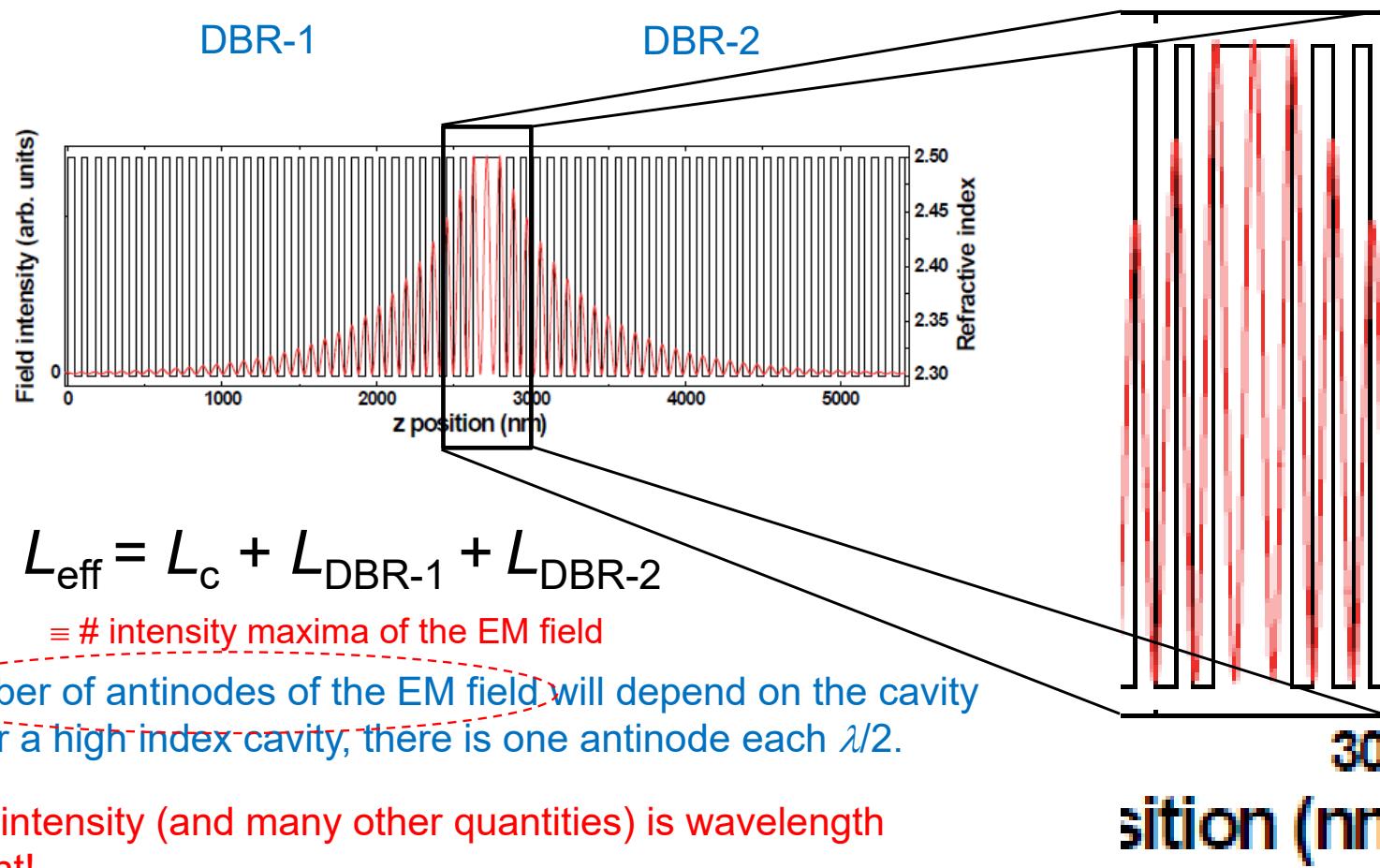
Since the mode wavelength is given by:

$$2n_c L_c \cos \theta_i = q\lambda$$

the cavity thickness under normal incidence is equal to $q\lambda/2$



Planar microcavities



Planar microcavities: dispersion curve

To get the mode dispersion, we need to express **the total wavevector inside the cavity (k_c)** as a function of its normal (k_\perp) and parallel (k_\parallel) components.

The interference condition applied to the wavevector in the normal direction leads to:

$$k_\perp 2L_c = 2q\pi \text{ where we use the fact that under normal incidence: } k_0 = k_\perp n_c \text{ and } k_0 = \frac{2\pi}{\lambda}$$

The total wavevector of the resonant wave inside the cavity is thus:

$$k_{c,q} = \sqrt{k_\parallel^2 + k_{c\perp}^2} = \sqrt{k_\parallel^2 + \left(\frac{q\pi}{L_c}\right)^2}$$

$$E_q = \frac{\hbar c}{n_c L_c} \sqrt{1 + \left(\frac{L_c k_\parallel}{q\pi}\right)^2}$$

Values in vacuum

Usually
 $k_\parallel \ll \frac{q\pi}{L_c}$

$$E_q = \frac{q\pi \hbar c}{n_c L_c} \left(1 + \frac{1}{2} \left(\frac{L_c k_\parallel}{q\pi} \right)^2 \right) = E_{q,0} + \frac{\hbar^2 k_\parallel^2}{2m_{ph}^*}$$

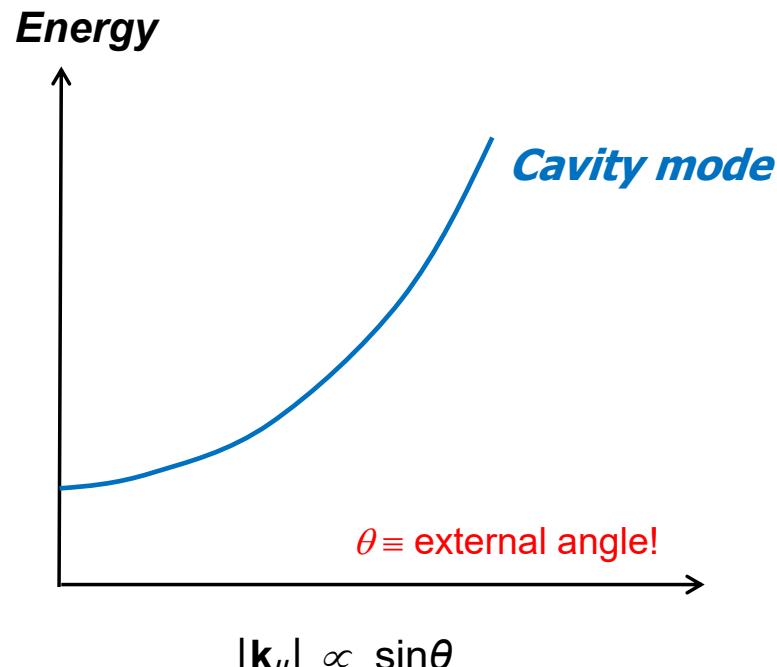
Effective mass of the cavity photon

$$m_{ph}^* = \frac{\hbar n_c q\pi}{c L_c}$$

Parabolic dispersion

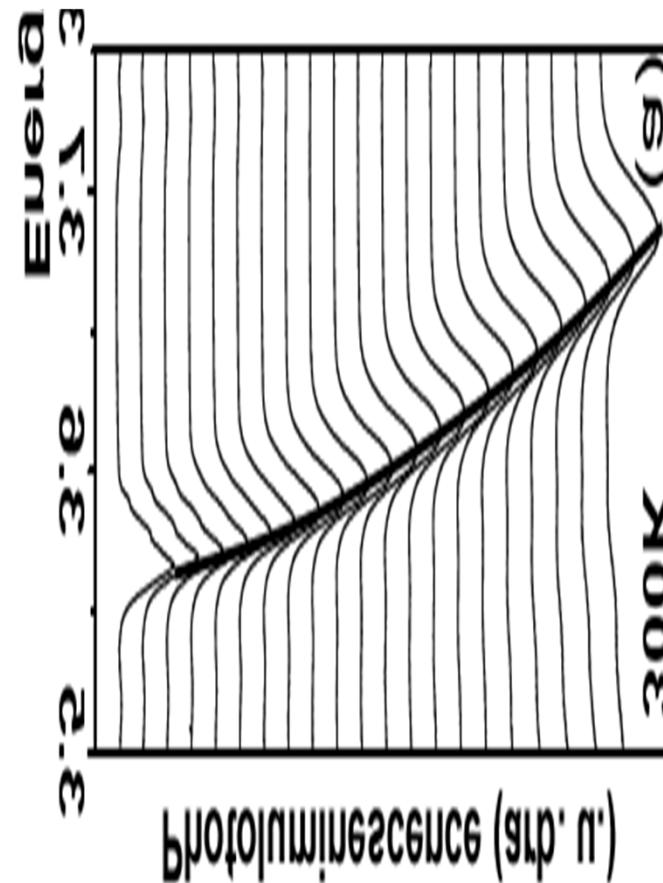
Planar microcavities: dispersion curve

Dispersion curve



Very small cavity photon effective mass

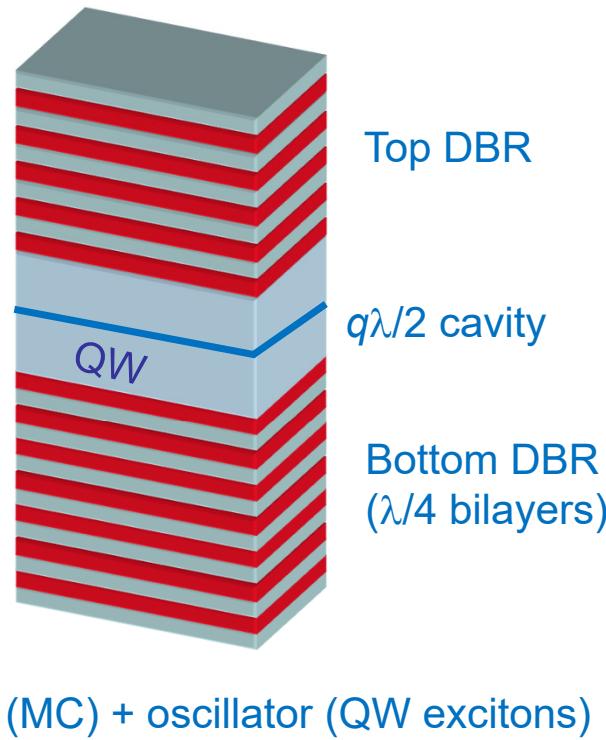
$$m_{\text{ph}}^* \sim 10^{-5} m_0$$



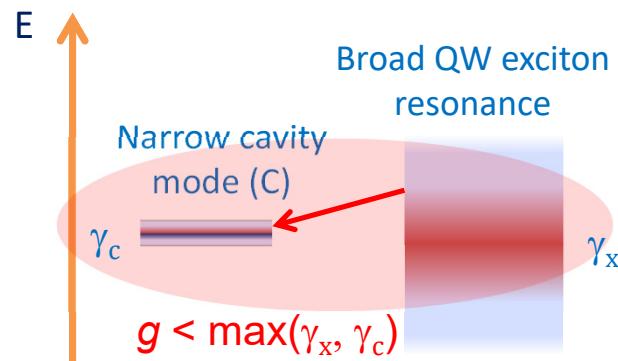
Light-matter interaction in microcavities

Microcavities: light-matter interaction

Semiconductor microcavity

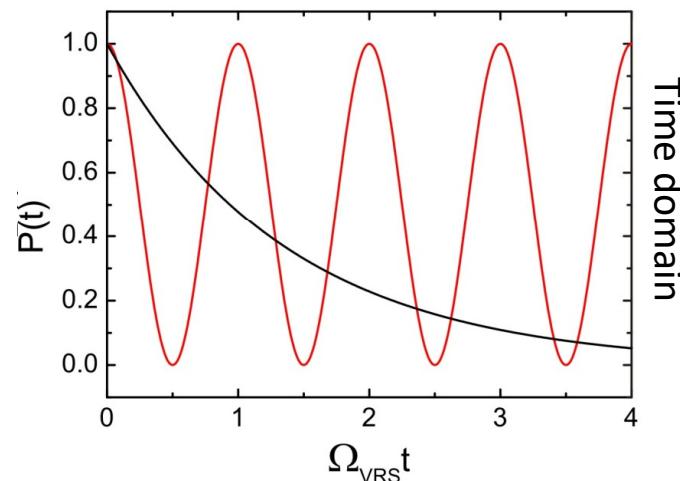
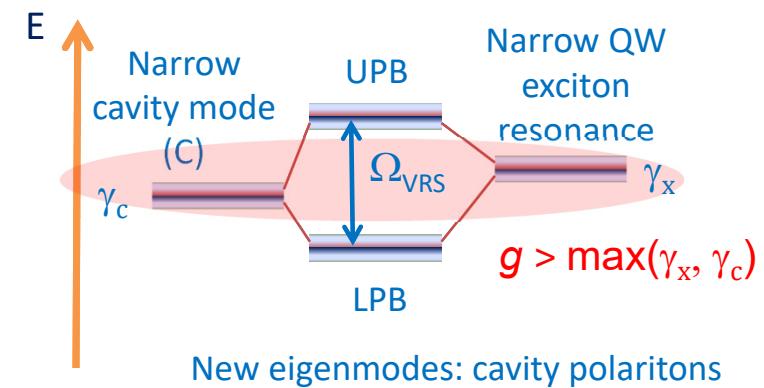


Light-matter interaction

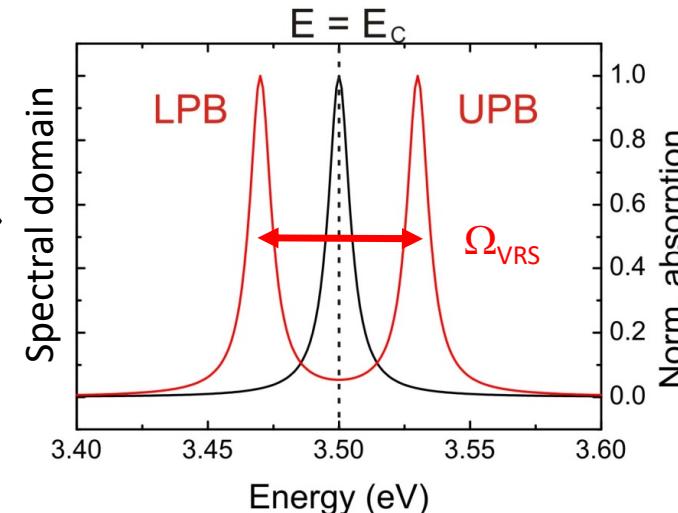


Perturbative (Fermi's golden rule)

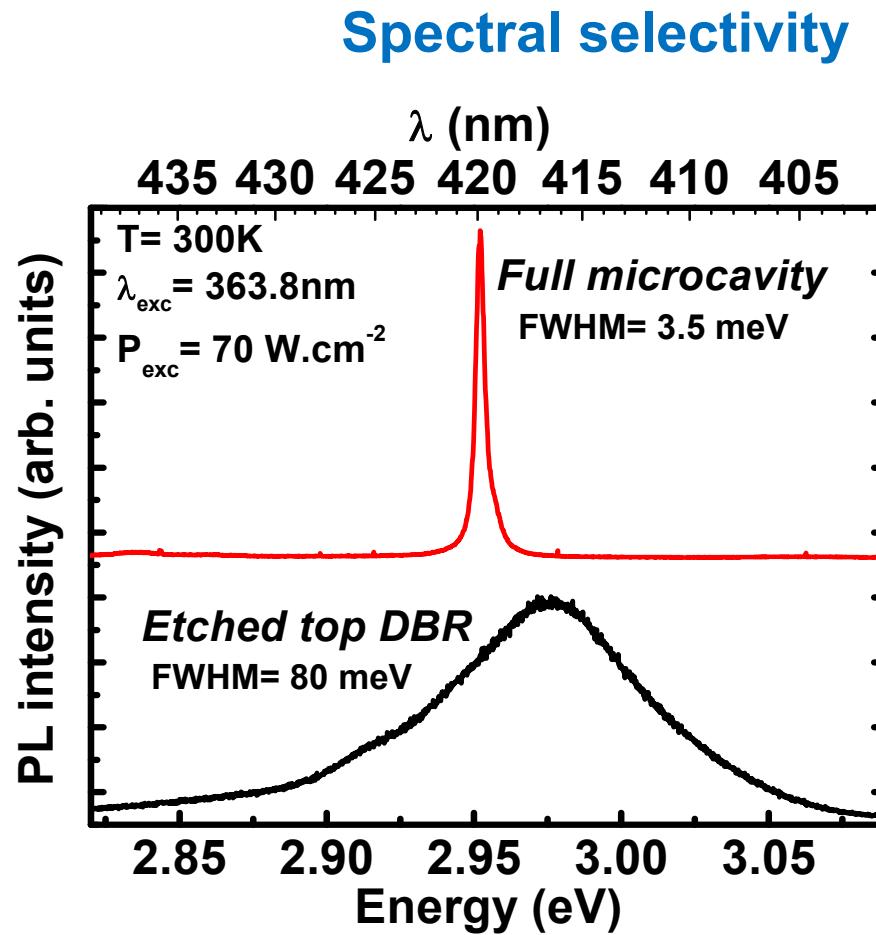
Weak coupling regime (WCR)



Non perturbative (correlated states)
Strong coupling regime (SCR)



Weak coupling regime



Cavity photon storage at specific wavelengths \Rightarrow the cavity acts as a spectral filter

Case of a QW with a broad luminescence linewidth in a cavity